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ABSTRACT 9\ 3 5

Some results recently found in the course of
current research on several buckling problems are
presented and discussed. These problems are (a)
initial post-buckling behavior and imperfection-
sensitivity of spherical and cylindrical shells
under external pressure (b) initial post-buckling
behavior and imperfection-~sensitivity of toroidal
shells under hydrostatic pressure and tension (c)
imperfection-sensitivity of axially compressed
cylinders with inside or outside stringers (d)
buckling of a model structure having a continuous
spectrum of random imperfections (e) dynamic
buckling of imperfection-sensitive structures and
(f) buckling of spherical caps under concentrated
loads.

SYMBOLS

A stiffener area

o

post-buckling coefficient (see Figure 2)

3
shell bending stiffness [E 12%;—v ))

D

E Young's modulus

H spherical cap rise (see Figure 10)
I stiffener moment of inertia

K),K3 foundation moduli (see Figure 7)

k parameter in imperfection spectrum (see
Figure 8)

L shell length

[ % (buckle length)

EC critical value of %

Nc classical buckling load per unit length

n circumferential wave number in spherical

cap buckling
load
c classical buckling load

P
P
PS static buckling load of imperfect structure
P dynamic buckling load

Pc classical buckling pressure

R shell radius (cylinder, sphere, toroidal-
segment boundary); correlation function
(see Figure 7)

Rx meridional radius of curvature of toroidal
segment

8 stiffener eccentricity (see Figure 6)

s power spectral density of imperfection

(see Figure 7)
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W deflection of column

] initial deflection of column

Z curvature parameter (- %% 1-v

§ buckling displacement amplitude

B initial displacement amplitude

2 root-mean-square initial displacement
v Poisson's ratio

INTRODUCTION

This paper contains a brief summary of the
results of some recent and current research on
several buckling problems. The scope of the
survey is arbitrarily limited to investigations
with which the writers have been directly or
indirectly concerned. Discussion will be made
only of phenomena and numerical results, with all
the details of analysis omitted. Historical
reviews of the backgrounds to the various problems
are not included, nor is a comprehensive
bibliography of pertinent references provided in
this survey.

POST-BUCKLING BEHAVIOR AND
IMPERFECTION-SENSITIVITY

The notion of imperfection-sensitivity and
its relation to the post-buckling behavior of
perfect structures will play an essential role in
the problems to be surveyed. The solid curves in
Figure 1, based on the studies of Koiterl’z,
illustrate several kinds of bifurcations in the
variation of load with buckling displacement that
are encountered when buckling of a perfect
structure is analyzed as a linear eigenvalue
problem. In each case the abscissa is supposed
to be a measure of the amplitude of a unique
buckling mode corresponding to the buckling load
assoclated with the lowest eigenvalue. The first
two sketches illustrate symmetrical bifurcations,
for which the initial post-buckling behavior is
independent of the sign of the buckling displace-
ment. Only symmetrical bifurcations occur in all
of the problems of this paper but asymmetrical
bifurcations illustrated in the last sketch are
also theoretically possible. The dotted curves
show how the applied load varies with displacement
when the structure contains an initial deflection
in the shape of the buckling mode. 1If, as shown
in the first sketch, the load on the perfect
structure drops after buckling, then the load on
the imperfect structure attains a local maximum
which is lower than the classical buckling load
of the perfect structure. Under dead loading this
local maximum would be associated with a sudden,
possibly catastrophic, increase in displacement
which, in a test, would be characterized as
buckling. If, as in the case illustrated by the
second sketch, the load on the perfect structure



increases after buckling, the corresponding
imperfect structure would exhibit a much milder
growth of displacement as the load reaches and
exceeds the classical buckling load. Finally, if
the perfect structure has an asymmetric buckling
bifurcation, snap buckling of the imperfact
structure would be expected for one sign of the
initial imperfection and mild behavior for the
opposite sign. Because the buckling strengths
of structures characterized by the behaviors
shown in the first and the last of the sketches
in Figure 1 are influenced by initial
imperfections, in some cases markedly so, such
structures will be called imperfection-sensitive.

The extent to which imperfections can affect
the buckling strengths of imperfection-sensitive
shell structures is shown in Figure 2. Suppose
that the symmetrical post-buckling load displace-
ment relation is given by the equation

2
=1+ b[%] @)
c
where P, 1s the classical buckling load, § is

c
the amplitude of the buckling displacement, say
normal to the shell, and t 1is the shell thick-
ness. The coefficient b 1is then a measure of
the rapidity with which the load rises or drops
after buckling. Imperfection-sensitive structures
would, of course, be characterized by negative

values of b . Let PS be the buckling load of

the imperfect structure when it contains an

initial imperfection, of amplitude 3 y in the
shape of the buckling mode. Then the solid curves
on the right of Figure 2 show how the ratio PS/PC

varies with the value of 6/t . As originally
shown by Koiter these curves are governed by the
equation

P.)3/2 = (r
s 3/3 s 1’s

[l- i’—] - /b lzl[l’_] (2)
c i c

and should really be regarded as correct only in
an asymptotic sense for sufficiently small values
of the initial displacement.

The most notorious imperfection-sensitive
shell structure is probably the long thin-walled
cylinder under axial compression which, as is
well-known, may buckle at values of stress that
are small fractions of the classical buckling
stress. Unfortunately, this system is not
described by the simple sketches on the left of
Figure 2 because it has a multiplicity of
buckling mode shapes associated with the
classical buckling mode. However, a separate
analysis due to Koiter gives the lower dotted
curve on the right of Figure 2 for the effect of
initial axisymmetric imperfections on the
buckling strengths of such cylinders., This curve
provides a calibration for the significance of the
coefficient b 1in the case of structures that
have just one buckling mode associated with a
symmetrical bifurcation. Thus, a value of

b = -1 would presumebly imply imperfection-

sensitivity about as gsevere as that of a cylinder
under axial compression. Note, however, that

values of b between -~.1 and =1 would
evidently also have quite significant implications
and even values of b in the neighborhood of

~.01 could imply buckling loads smaller than the
classical ones by amounts that are not entirely
negligible.

In passing, mention can be made of a recent
atudy carried out on another structure that has
multiple buckling modes associated with ite
classical buckling load, namely, the spherical
shell under uniform external pressure. It has
long been suspected that this structure is about
as imperfection~sensitive as the cylindrical shell
and this has been theoretically verified very
recent1y3 on the basis of, again, an asymptotic
calculation based on Koiter's general theory,
exploiting the shallow shell equations appropriate
to very thin shells that buckle with very zhort
wave lengths. The variation of PS/Pc wirth

[_6.
t
certain checkerboard pattern of initial displace-~
ments is given by the dotted curve just above,

and nearly coincident with, the curve for the
cylinder. Attention will now be directed to the
results of studies of several configurations
having symmetrical buckling bifurcations with

just one buckling mode. The point of these
studies was to discover whether and to what extent
these configurations are imperfection sensitive

by calculating the post-buckling coefficient b .
These calculations were all guided by the general
theory of post-buckling behavior laid down by
Koiter. Within the framework of the shell
theories used (Donnell or shallow-shell or a
hybrid combination of these) the calculaticns were
exact.

found for the imperfect sphere having a

SIMPLY SUPPORTED CYLINDERS UNDER
HYDROSTATIC LOADING

The upper curve in Figure 3 provides tie
classical hydrostatic buckling pressure p. of

a cylindrical shell having conventional simple
support boundary conditions. The theoretical
resu%ts for the nondimensional buckling pre:isure
p~RL

_%75— calculated by Batdorf" on the basis of

Donnell's equations are plotted against the
curvature parameter Z introduced by Batdorf.
The results are equally applicable to an isclated
shell of length L or to a very long shell
continuous over rigid frames having a spacing of
L which provide no torsional restraint to the
cylinder. In each case, however, pre~buckling
deformations are neglected. The lower part of the
figure displays the new results just found® for
the post-buckling coefficient b again plotted
against Z . As shown, the parameter b is
different for the two configurations even though
the classical buckling pressure is the same; the
isolated cylinder turns out to be substantially
more imperfection-sensitive over the low range of
Z than the cylinder continuous over frames. It
might be mentioned that there have been previous
investigations of the post-buckling behavior of
cylinders under hydrostatic loading, with results



that could be described as approximate solutions
for finite post-buckling deformations. The
present results, in contrast, are asymptotically
exact solutions for vanishingly small post-
buckling deflections. It is felt that this
present kind of solution has greater significance
and is perhaps more reliable as an index of
imperfection-gensitivity.

The results of buckling tests from a variety
of sources (as collected by Dow®) are displayed
in Figure 3 for comparison with the theoretical
classical buckling pressures. The extent to which
theory and experiment disagree in various ranges
of Z 1is in qualitative agreement with the
degrees of imperfection-sensitivity implied by the
negative values of b in these ranges.

TOROIDAL SEGMENTS UNDER HYDROSTATIC LOADING

The top part of Figure 4 shows results
recently calculated by Stein and McElman’ for the
classical hydrostatic buckling pressures of
simply-supported toroidal segments having various
curvature ratios R/Rx , where R represents the

radius of the boundary circles and Rx is the
meridional curvature. The case R/Rx =0

coincides with the cylinder just discussed. The
results of recent calculations® of the post-
buckling coefficient b are displayed in the
bottom part of the figure. The most important
implication here is that while the classical
buckling pressure increases with increasing values
of R/Rx so does imperfection-sensitivity. In

other words, increasing the meridional curvature
of a toroidal shell would not strengthen the shell
against buckling as much as one might hope purely
on the basis of a classical buckling analysis.
Note that as R/Rx approaches 1 from below the

spherical geometry 1is attained, for which post-
buckling calculations on the basis of a unique
classical buckling mode may no longer be valid,
and so the curiously shaped curves for R/Rx = .9

and .95 should be discounted. It may be
confidently concluded, however, that, for hydro-
static loading, imperfection-sensitivity disappears
only for toroidal segments of sufficiently large
negative Gaussian curvature.

TOROIDAL SEGMENTS UNDER AXIAL TENSION

For positive values of R/Rx a toroidal

segment under axial tension acquires
circumferential compressive stresses and is there~
fore susceptible to buckling, The results of
calculations® for the classical axial buckling
force per unit length NC are shown as a function

of Z 1in Figure 5, for several values of R/Rx .

The post-buckling coefficient b was found to
vary as shown in the bottom part of Figure 5; for
each value of R/Rx there is imperfection-

sensitivity only for 2 larger than the critical
value for which b pgoes negative. Several tests
have been performed by Yao? for the case R/R = 1,

X

with results shown by the circles. Yao's
specimens were clamped, rather than simply
supported but his own calculated buckling loads
for this case were only a little higher than those
given by the curve in Figure 5. Thus, the dis-
crepancies between the test results and
theoretically calculated buckling loads are con-
gistent with the imperfection-sensitivity implied
by the negative values of b that were found for
simply supported toroidal segments in the ranges
of 2 corresponding to the test specimens.

STIFFENED CYLINDERS UNDER AXIAL COMPRESSION

There has been much interest recently in the
exciting rediscovery of van der Neut's early
theoretical observation'’, now well confirmed by
tests, that outside stringers can be much more
effective than inside stringers in stiffening a
circular cylinder against buckling under axial
compression, It has been suggested occasionally
that classical theories of buckling should be
reliable for the quantitative prediction of the
buckling loads of stiffened cylinders regardless
of whether the stiffeners are inside or outside.
Recent calculatio , however, have shown this not
to be so and an example is given in Figure 6 for a
simply supported cylinder. If torsional stiffness
of the stringers 1s neglected, three parameters
are needed to characterize the stiffening. These
are the area ratio As/dt , the bending stiffness

ratio EIS/Dt , and the eccentricity ratio
Y12 % where

center line to the centroid of the stringer, is
considered to be positive for outside stiffening
and negative for inside stiffening. The values
chosen for these nondimensional parameters in the
present example correspond to only moderately
heavy stiffening and are shown in Figure 6. The
curves at the top of Figure 6 give, as a function
of Z , the buckling load per unit circumference
of the stiffened cylinder divided by the
corresponding quantity for the unstiffened
cylinder, and were calculated on the basis of
"smeared-out" stiffener properties, These results
imply the superiority of outside over insildie
stringers, This conclusion, however, must clearly
be tempered by the results for the post-buckling
coefficient b which show that the cylinder with
outside stiffening is generally much more
imperfection-sensitive than the one with inside
stiffening. It should be emphasized that the
coefficient b in this figure is still defined
with respect to buckling displacements normalized
by the skin thickness and not by any larger
effective thickness of the shell-stringer
combination. Consequently, over a substantial
range of Z in the vicinity of 100 it appears
that the effects of initial imperfections in
reducing the strength of cylinders with outside
stringers below the theoretically predicted
classical buckling loads would be by no means
negligible. On the other hand, it is interesting
to note that in the range of high Z above 1000

both inside a2nd cutside stiffsners induce q-_-i:e

clTn ANgAfe and gucsige glillien pRetedited

comparable imperfection-sensitivity and so the
benefits of outside stiffening would appear to be

s , the distance from the skin



quite dependable in this range. In any event, the
most important conclusion to be drawn is that with-
out supporting evidence, either experimental or
theoretical, it would be quite incorrect to assume
that classical buckling theory is adequate for the
prediction of the buckling strength of stiffened
cylinders under axial compression, especially if
the stiffening is on the outside.

STRUCTURES WITH RANDOM IMPERFECTIONS

The kinds of investigations just discussed
serve to demonstrate whether or not a given
configuration is imperfection-sensitive but
indicate only qualitatively the degree of such
sensitivity; they can not be used to predict the
actual buckling load of a given structure that is
imperfection-sensitive. One reason for this
deficiency is that the initial imperfection
certainly does not have precisely the shape of
the classical buckling mode, as assumed in the
analyses. On the other hand, it does not seem
very sensible to attempt to develop methods of
analyses based upon a very detailed knowledge of
the imperfection in the structure under con-
sideration. A more useful goal might be to attempt
to correlate the buckling strengths of imperfect
structures with appropriate statistical
descriptions of their initial imperfections. To
that end the pilot problem illustrated in Figure 7
has recently been studied!2. In this problem an
infinitely long column rests on a nonlinear
"softening" foundation_and is supposed to have an
initial displacement W that is assumed to be a
stationary random function of position along the
length of the beam. The perfect structure has a
continuous spectrum of buckling loads corresponding
to the spectrum of buckle modes sin x/% where 2

can have any value. The critical buckling load Pc

however, occurs for a particular value £ of this

[
wave-length parameter. It is evident that not only
will initial imperfections in the shape of the
critical buckling mode influence the actual static
buckling load of the imperfect structure so will,
to some extent, imperfections having any other
shape. It is gsupposed that the mean-square
imperfection A2 1is known, as is the

correlation function R of the imperfection
(considered a function of the nondimensional
parameter £ = x/ﬁC ). The associated power

spectral density S(¢) 1is defined conventionally
as the Fourier transform of the correlation
function, The kinds of results that were found
for this problem (by means of approximate
techniques that lean heavily on the so-called
method of equivalent linearization) are
illustrated in Figure 8. Shown in this figure

is one choice that was made (arbitrarily) for the
correlation function of the imperfection, and the
assoclated power spectral density, both
characterized by the single parameter k in
addition to the mean-square imperfection &% ,
The mean-square imperfection combines with the
parameters of the foundation modulus to give the
pertinent nondimensional parameter kzA2/k; as a

measure of the magnitude of the imperfection, and

k serves as a measure of the spectral content of
the imperfection. The curves show the calculated
values of the ratio of the buckling load of the
imperfect structure to that of the perfect
structure as a function of these two parameters.
It 18 interesting to note that the buckling loads
are relatively insensitive to k over a sub-
stantial range. This tends to encourage the hope
that quantitative predictions of the buckling
strengths of imperfection-sensitive structures
may eventually be possible on the basis of the
knowledge of a few statistical parameters
descriptive of the imperfections.

Noted in Figure 8 is an interesting
mathematical difference between these resuits for
a structure having a continuous spectrum of
buckling modes and the earlier ones for structures
having unique buckling modes. In the one-mode
case the difference between the buckling loads of
the perfect and imperfect structures is,
asymptotically, proportional to (8)2/3 5 in the
continuous-spectrum case this difference is
proportional to (8)4/5 .

DYNAMIC BUCKLING OF IMPERFECTION-SENSITIVE
STRUCTURES

The general approach of Koiter has recently
been extended by the writers!3,1%,15 to handle the
buckling of imperfection-sensitive structures under
a variety of time-dependent loading conditionms.
General results intended to serve as approximate
guidelines for the analysis and design of such
structures have thereby been obtained and just one
example of this kind of result is illustrated in
Figure 9. Consider step-loading of an
imperfection-sensitive structure of the type that,
when perfect, bifurcates symmetrically, as
illustrated,and consequently has a static buckling

load Ps less than Pc if it is imperfect, The

results of the dynamic analysis show that the same
structure having the same imperfection would have
a dynamic buckling load PD given by the graph in

Figure 9. Here the ratio of the dynamic to the
actual static buckling load of the imperfect
structure is plotted against the ratio PS/PC .
which, of course, equals 1 for the perfect
structure and is smaller the more imperfect is
the structure. It is seen that for step-loading
the dynamic buckling load is always less than the
static buckling load, but even for very imperfect
structures is never less than 70% of the static
buckling load. The most important and useful
implication of this curve is that it provides an
estimate of the dynamic buckling load just on the
basis of PS/Pc , and does not require a

knowledge of the initial imperfection.

SPHERICAL CAP UNDER CONCENTRATED LOAD

The last buckling problem to be discussed in
this survey differs in several respects from all
of those previously mentioned. The pre~buckling
stress state is not trivial, but requires the
solution of a nonlinear problem; the buckling
loads themselves have not been previously



determined; and in all likelihood the structure is
imperfection-insensitive, although this remains to
be established theoretically. The clamped shallow
spherical shell shown in Figure 10 is subjected to
a load P at the center; the solid curve shows

P _R
cr

27D

associated with buckling varies with the con-
ventional geometrical parameter X . This curve
gives the lowest of the loads given by the

separate curves associated with buckling in

various numbers n of circumferential waves. The
case n = 0 for axisymmetric buckling has
previously been obtained by Mescalll® and
corresponds to a local maximum in the variation

of load with axisymmetric displacement. The

other curves were foundl’ by discovering
bifurcations of axisymmetric equilibrium paths
into non~axisymmetric branches. The mode shapes
associated with the cases n = 3, 4, and 5 , when
combined with an axisymmetric dimple, would
correspond to deformed areas that are roughly in
the shapes of triangles, squares, and pentagons,
respectively. Such deformation shapes have in

fact been observed in the past during tests on
spherical shells under concentrated loads18:19,
There does not, however, appear to be precise
experimental information concerning a critical
value of load at which non-axisymmetric
deformations first begin to appear, nor has any
snapping behavior been discovered in conjunction
with their appearance. Indeed, observation has
been madel!® of a steady progression of .three, four,
and five lobed deflection patterns under increasing
load and this correlates with the competition shown
in Figure 10 among the modes for n = 3, 4, and 5.
All of these facts suggest that the bifurcation
into non-axisymmetric deformation is associated
with increasing values of load and verification of
this imperfection-insensitive behavior on
theoretical grounds is now in progress.
noted that the results for A large are
applicable to a full spherical shell of very small
thickness. Thus the full sphere under equal and
opposite concentrated loads may be expected to
begin to exhibit a transition from axisymmetric to
non-axisymmetric deformation, at a value of

PR
27D 11 .

how the value of the load parameter

It may be

near
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